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Statistical Mechanics Approach to Coding Theory
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We propose a method based on cluster expansion to study the optimal code
with a given distance between codewords. Using this approach we find the
Gilbert�Varshamov lower bound for the rate of largest code.
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1. INTRODUCTION

One of the basic problems in coding theory is to find the largest code of
a given length and minimum distance. More precisely, one wants to find
the quantity A(n, d ) = maximum number of codewords in a binary code
of length n with minimum distance d between codewords.

Here the codewords are points in an hypercube [0, 1]n, and the dis-
tance is the Hamming distance, i.e., the number of different digits between
two points.

An important problem in this subject is to find the behaviour of
A(n, d ) for large n, large d and fixed ratio d�n=$. Such problem, which is
obviously very interesting in the applications to the error-correcting codes,
is not completely solved. Upper and lower bounds of the rate of largest
code, i.e., of the quantity R=1�n log2 A(n, d ) are available, but the gap
between the two bounds is still large, most of all in certain regions, and the
existence of limn � � R is still unproved. In particular, the lower bound
known so far (Gilbert�Varshamov lower bound ) is the following classical
result (see [G], [V], [MS]):

R�1&
1
n

ln2 :
$n

k=0
\n

k+ (1.1)
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In this paper we propose an approach to this problem based on the
standard expansion used in statistical mechanics of lattice systems. By an
estimate based on low density expansion it is possible to find easily the
bound (1.1). This suggest that the statistical mechanics approach to this
problem may give new results.

2. BASIC NOTATION AND DEFINITIONS

In general, if A is any finite set, we denote by |A| the number of
elements of A. Given a finite set A, we define a graph g in A as a collection
[*1 , *2 ,..., *m] of distinct pairs of A. The elements of A are called vertices
of g. The pairs *1 , *2 ,..., *m are called links of the graph g, and given a link
*=[x1 , x2] we will denote supp *=x1 _ x2 . We denote by | g| the number
of links in g. Given two graphs g and f we say that f/g if each link of f
is also a link of g.

A graph g=[*1 , *2 ,..., *m] in A is said to be connected if for any pair
B, C of subsets of A such that B _ C=A and B & C=<, there is a *i # g
such that supp *i & B{< and supp *i & C{<. If g is connected, then
necessarily �m

i=1 supp *i=A; in this case A is also called the support of g
and it is denoted by supp g.

We denote by GA the set of all connected graphs in A.
A tree graph { on [1,..., n] is a connected graph such that |{|=n&1.

The set of all the tree graph over [1,..., n] will be denoted by Tn .

3. HARD SPHERE LATTICE SYSTEMS.

Let 4 be a finite set and denote its elements (sites) by x. Suppose that
a distance d(x, y) is defined in 4, and, \d>0, it exists Vd>0 such that
(translational invariance) �y # 4 : d(x, y)�d 1=Vd independent from x. Vd is
the volume of the sphere of radius d and center in x # 4.

We want to study here the statistical mechanics of a gas of sphere in
4 interacting only via an hard core potential, i.e., a pair potential of the
form

U(xi , xj )={+�
0

if d(x i , x j )�d
otherwise

(3.1)

The grand-canonical partition function 54 , for a fixed activity z is given by

54=1+ :
k�1

zk 1
k!

:
x1,..., xk # 4

e&�1�i�j�k U(xi , xj) (3.2)
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The logarithm of this partition function can be written as a formal series
in power of z through a standard Mayer expansion

log 54= :
N�1

cNzN (3.3)

where, denoting shortly Uij=U(xi , xj )

cN=
1

N !
:

x1,..., xN # 4

:
g # GN

`
ij # g

(e&Uij&1) (3.4)

Since by definition Uij is a non negative potential, we can use the
Brydges�Battle�Federbush tree graph identity (in the special case of non
negative potentials, see, e.g., [B] and [PdLS]). Namely the following
inequality holds:

} :
g # GN

`
ij # g

(e&Uij&1)}� :
{ # TN

`
ij # {

|e&Uij&1|

hence we immediately get the bound

|cN |�
1

N !
:

{ # TN

:
x1,..., xN # 4

`
ij # {

|e&Uij&1| (3.5)

Since, by (3.1),

|e&Uij&1|={1
0

if d(xi , xj )�d
if d(xi , x j )>d

we have for any tree { # TN (exploiting translational invariance)

:
x1,..., xN # 4

`
ij # {

|e&Uij&1|=|4| V N&1
d (3.6)

Moreover we have, from Cayley's theorem

:
{ # TN

1=N N&2 (3.7)

Then we can write

|cN |�|4|
N N&2

N !
V N&1

d (3.8)

909Statistical Mechanics Approach to Coding Theory



(3.8) shows that the formal series of the logarithm of the gran partition
function, is absolutely convergent for any z<1�eVd .

4. GILBERT�VARSHAMOV LOWER BOUND

We can use the general result of the above section in the following
framework: let 4 be the hypercube of dimension n, (hence |4|=2n) and
d(xi , xj ) the Hamming distance. Let d=$n. The close-packing configura-
tion (corresponding to the limit z � � at a fixed volume |4|=2n) gives an
expected value of the number of particles in the gas equal to A(n, d ). In an
intermediate configuration, i.e., for finite z, such expected value of the
number of particles in the system is given by

N� =z
�
�z

log 54=|4| :
N�1

NcNzN (4.1)

The series in r.h.s. of (4.1) is again analytic for z<1�eVd , and since U ij is
positive one can show that cN=(&1)N&1 |cN | (using tree graph identity;
see also [Ru]) and c1=1. Using (3.8), for any z<1�eVd we can write

N� �|4| _z& :
N�2

N N&1

N!
V N&1

d zN&�|4| z _1& :
N�1

N N

(N+1)!
(zVd )N&

Choosing e.g., z=1�4eVd and considering that N N�(n+1)!�eN we have

N� \z=
1

4eVd+�|4|
1

4eVd _1& :
N�1

4&N&=|4|
1

6eVd
(4.2)

The volume Vd is evidently

Vd= :
$n

k=0
\n

k+ (4.3)

Since A(n, d )�N� for any z<� and recalling that |4|=2n we get

A(n, d )�N� \z=
1

4eVd+�2n 1
6e �$n

k=0 ( n
k)

(4.4)

and therefore

R�1&
1
n

log2 :
$n

k=0
\n

k+&
log2 6e

n
(4.5)

and this gives (1.1) in the limit n � �.
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It is interesting to outline that using general results in statistical
mechanics (see [LP]) it is also possible to write lower bounds for N� also
outside the radius of convergence of the series (4.1). In particular

N� �|4|
z

1+2c2z
\z (4.6)

By means of (4.6) and c2=Vd �2 one can find directly a bound for
A(n, d ), since

A(n, d )= lim
z � �

N� � lim
z � �

z
1+2c2 z

=
|4|
Vd

(4.7)

and this gives directly (1.1). Note that it is possible to find more refined
lower bounds of the density of our lattice gas (see again [LP]), involving
subsequent coefficients ck , but unfortunately such estimates do no affect the
exponential dependence of the density from n.

5. CONCLUSIONS

The result of this short letter is simple and straightforward, but it is in
some sense unexpected, because it shows how a rough estimate in the low
density region of the statistical mechanics model gives a lower bound of the
rate of the best code equal to the best lower bound available in information
theory. A direct lower bound of the rate is also possible, see (4.7), but the
result does not change. Possible developments of this work in order to
obtain a rigorous upper bound of the rate of the best codes are more dif-
ficult, due to the fact that the ``ground state'' of the statistical mechanics is
unknown. Also classical a priori upper bound for N� (see [LP]) are unuse-
ful, because they are meaningless in the limit z � �, and we are forced to
study such limit in order to obtain an upper bound for A(n, d ). However
very interesting developments would be possible (namely the proof of the
tightness of Gilbert�Varshamov bound) if the absence of phase transitions
for this system could be proved. We have a rough indication in this direction:
simple computations seem to show that in the limit n � � the coefficients cN

become of the form cN=V N&1
d bN , with bN independent from n, d, and this

feature was used by various authors to argue the absence of phase transitions
in similar models (e.g. for hard spheres in infinite dimensions).
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